
1. 1D Heat equation

Suppose that a smooth solution upx, tq satisfies the following differential equation

ut “ uxx pHeat equationq, (1)

in tpx, tq : 0 ď x ď L, 0 ď tu. Then, upx, tq can represent the temperature under the heat flow on a rod

located in t0 ď x ď Lu. In order to solve the equation, we need the initial data

upx, 0q “ gpxq pCauchy conditionq, (2)

and one of the following boundary data

up0, tq “ h1ptq, upL, tq “ h2ptq pDirichlet conditionq, (3)

´uxp0, tq “ h1ptq, uxpL, tq “ h2ptq pNeumann conditionq, (4)

´uxp0, tq ` αup0, tq “ h1ptq, uxpL, tq ` αupL, tq “ h2ptq pRobin conditionq. (5)

2. Uniqueness

We establish the following uniqueness theorem.

Theorem 1 (Uniqueness). Given smooth functions gpxq, h1ptq, h2ptq, the heat equation (1) has at most

one smooth solution upx, tq satisfying (2) on t0 ď x ď Lu and (3) on tt ě 0u.

Proof. Suppose that upx, tq and vpx, tq are solutions satisfying the conditions. Then, the smooth func-

tion wpx, tq “ upx, tq ´ vpx, tq satisfies

wt “ ut ´ vt “ uxx ´ vxx “ wxx. (6)

Moreover, we can observe

wp0, tq “ wpL, tq “ 0. (7)

Next, we define an energy

Eptq “
ż L

0
w2px, tqdx.

Then, (6) shows
d
dt Eptq “

ż L

0
2wwtdx “ 2

ż L

0
wwxxdx.
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Using the integration by part and (7),

d
dt Eptq “ 2wwx|

L
0 ´ 2

ż L

0
|wx|

2dx “ ´2
ż L

0
|wx|

2dx ď 0. (8)

Therefore,

0 ď Eptq ď Ep0q, (9)

for all t ě 0. However, we have wpx, 0q “ 0 by definition, namely Ep0q “ 0. Thus, Eptq “ 0 and

wpx, tq “ 0. Hence, the smooth solution is unique. �

Remark. If h1ptq “ h2ptq “ 0, then we can modify the proof above to show

d
dt

ż L

0
u2px, tqdx ď 0. (10)

Then, it would be a natural question to prove lim
tÑ`8

sup
0ďxďL

|upx, tq| “ 0. We will prove this next week,

but it’d be good to try to prove it yourself.

3. Review: Fourier series

We recall the Fourier series. In this class, we will use the following fact without proofs.

Given a smooth function f : r´L, Ls Ñ R with f p´Lq “ f pLq, the following holds

lim
NÑ`8

sup
|x|ďL

| f pxq ´ S Npxq| “ 0,

for the partial sums S Npxq of Fourier series,

S Npxq “
a0

2
`

8
ÿ

m“1

am cospmπx{Lq `
8
ÿ

m“1

bm sinpmπx{Lq,

where

a0 “
1
L

ż L

´L
f pxqdx, am “

1
L

ż L

´L
f pxq cos

´mπx
L

¯

dx, bm “
1
L

ż L

´L
f pxq sin

´mπx
L

¯

dx.

Suppose that f : r0, Ls Ñ R is a smooth function satisfying f p0q “ 0. Then,

lim
NÑ`8

sup
0ďďL

| f pxq ´ S Npxq| “ 0,
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holds for the partial sums S Npxq of Fourier sine series,

S Npxq “
8
ÿ

m“1

bm sinpmπx{Lq,

where

bm “
2
L

ż L

0
f pxq sin

´mπx
L

¯

dx.

Suppose that f : r0, Ls Ñ R is a smooth function satisfying f 1p0q “ 0. Then,

lim
NÑ`8

sup
0ďďL

| f pxq ´ S Npxq| “ 0,

holds for the partial sums S Npxq of Fourier cosine series,

S Npxq “
a0

2
`

8
ÿ

m“1

am cospmπx{Lq,

where

a0 “
2
L

ż L

0
f pxqdx, am “

2
L

ż L

0
f pxq cos

´mπx
L

¯

dx.

4. Review: ODE

We recall the some well-known results in ODEs. We will also use them without proofs.

Suppose that a function upxq satisfies the following differential equation

u2pxq ` µ2upxq “ 0. (11)

Then,

upxq “ c1 sinpµxq ` c2 cospµxq, (12)

for some constants c1, c2 depending on initial (or boundary data). For example, if upxq satisfies up0q “

0 and u1p0q “ 1, then the constants must be c1 “ µ´1 and c2 “ 0.

Suppose that a function upxq satisfies the following differential equation

u1pxq “ λupxq. (13)
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Then,

upxq “ ceλx, (14)

for some constant c depending on the initial data.

5. Separation of Variables

In this section, we will SOLVE the Cauchy-Dirichlet problem with the vanishing Dirichlet data.

Namely, given smooth gpxq, we will find the solutions to the heat equation (1) under the conditions

(2) and (3), where h1ptq “ h2ptq “ 0.

To begin with, we remind that by the uniqueness theorem 1 there exists at most one solution. Hence,

if we find a solution, then it is the only solution.

Next, we want find a function upx, tq “ vpxqwptq satisfying (1) and (3) with h1 “ h2 “ 0. (Notice

that in this step we do not consider (2), yet.) Then, (1) implies

wtv “ ut “ uxx “ wvxx.

Dividing by vw yields
wtptq
wptq

“
vxxpxq
vpxq

.

The left hand side only depends on t, while the right hand side only depends on x. Therefore, there

exists some constant λ P R such that
wt

w
“

vxx

v
“ λ.

We consider the three cases that λ ą 0, λ “ 0, and λ ă 0.

Case 1: λ ą 0. In this case, by using the Dirichlet condition vp0q “ vpLq “ 0 we can obtain

0 ď λ

ż L

0
v2dx “

ż L

0
vpλvqdx “

ż L

0
vvxxdx “ vvx

ˇ

ˇ

L
0 ´

ż L

0
|vx|

2dx “ ´
ż L

0
|vx|

2dx ď 0, (15)

namely v “ 0. Thus, u “ 0.

Case 2: λ “ 0. In this case, vxx “ 0 implies vpxq “ ax ` b. Hence, the Dirichlet condition

vp0q “ vpLq “ 0 guarantees v “ 0. Thus, u “ 0.
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Case 3: λ “ ´µ2 ă 0. In this case, the equation vxx ` µ2v “ 0 has non-trivial solutions. By the

results in ODE, vpxq “ A cospµxq ` B sinpµxq holds for the constants A, B satisfying the boundary

conditions

0 “ vp0q “ A cos 0` B sin 0 “ A,

0 “ vpLq “ A cospµLq ` B sinpµLq “ B sinpµLq.

Hence, we have sinpµLq, and thus µL “ mπ for a natural number m. Namely, given m P N we have

vm “ c sinpmπx{Lq,

for some constant c. In addition, λ “ ´µ2 “ pmπ{Lq2 gives

d
dt wm “ ´µ

2wm “ ´pmπ{Lq2wm. (16)

Hence, the ODE result says

wm “ c expp´pmπ{Lq2tq

for some constant c. In conclusion, for each m P N and any constant Bm P R

umpx, tq “ Bm expp´pmπ{Lq2tq sinpmπx{Lq

satisfies (1) and (3) with h1 “ h2 “ 0.

By the result in the last case, we know that

u “
8
ÿ

m“1

Bm expp´pmπ{Lq2tq sinpmπx{Lq, (17)

satisfies (1) and (3) with h1 “ h2 “ 0.

Now, we define the coefficients Bm by

Bm “
2
L

ż L

0
gpxq sinpmπx{Lqdx. (18)

Then, by the Fourier series theorem above, the function upx, tq in (17) satisfies (2). Namely, it is the

desired solution.
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